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Celestial and beam dynamics are similar and share the same methods for the stability

analysis. The perturbation theory is the main analytical tool and its version for the
symplectic maps, which describe the transverse motion in circular accelerators, are the

Birkhoff normal forms. They allow to evaluate the dynamic aperture when the frequency
is close to an unstable resonance and to estimate the stability time when it is far from

low order resonances. In celestial mechanics the numerical analysis of stability is usually

based on the Lyapunov error (for instance, the Fast Lyapunov Indicator). In the case of
symplectic maps the forward and reversibility errors induced by random perturbations

have been proposed. The use of non-resonant normal forms allows to establish the

power law asymptotic behavior of errors with the corresponding pre-factors. The error
plots in a phase plane, obtained by fixing the missing coordinates, allow to establish the

stability properties of each orbit. The reversibility error due to round-off jointly with

the Lyapunov error provide an adequate stability pattern for the Hénon map and their
use is suggested for more realistic models such as the one turn map in a ring.
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1. Introduction

Celestial mechanics and beam dynamics are based on the Hamiltonian formulation

of the equations of motion of planets or protons in a circular ring. The stability of

orbits after a large number of periods is the most relevant problem. In the two-body

gravitational problem the circular orbit of a planet is stable, whereas the circular

orbit of a charged particle moving in a uniform magnetic field is not. Indeed, in

the last case a small component of the velocity along the magnetic field causes

a drift along it. Some analogies exist between the planar restricted three-body

problem1 and the transverse motion of a flat beam in a non-linear lattice. A closer

correspondence is found with the Hénon-Heiles2 model describing the motion of a

star in an elliptical galaxy. In this case there is a neighborhood A of the origin,

preserved by the beam map or the Hénon-Heiles Poincaré map, out of which the

orbits escape exponentially fast to infinity. The generic one turn map in a ring is

4D just as the Poincaré map of the non planar restricted three-body system. The
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absence of topological barriers allows Arnold diffusion. As a consequence, finite

time stability must be considered according to the Nekhoroshev theorem3,4. The

stability times of interest in a planetary system or in a large hadron accelerator are

comparable, typically billions of periods.

In order to investigate the geometry of orbits, perturbation methods were developed

in celestial mechanics. For the Poincaré map the perturbative analysis near a lin-

early stable fixed point was developed by Birkhoff and was proposed as the natural

tool to analyze the one turn map of a circular accelerator5–7 and8 with references

therein. The method consists in finding a change of coordinates which transforms

the given map into a new map invariant with respect to a continuous or discrete

symmetry group.

The nature of an orbit with initial point x0 is investigated by looking at the dis-

placement of an initial condition, starting at x0 + εη0 with ‖η‖ = 1. After n

iterations the displacement is εηn at first order in ε and the Lyapunov error can be

defined as the norm of the normalized displacement ‖ηn‖. Its logarithm was first

proposed as a fast indicator named Fast Lyapunov Indicator (FLI)9. Recently, the

displacement εΞn induced by small random perturbations was considered and the

so called forward error (FE) was defined as the root mean square (rms) deviation of

Ξn. The reversibility error (RE) was defined as the rms of the normalized displace-

ment ΞR
n from the initial point, and calculated after iterating the map forward and

backward n times with an additive noise10. The growth of errors follows a power

law for regular orbits, and an exponential law for chaotic orbits. For an integrable

map the power law growth can be proved by using normal coordinates11 and the

result is extended here to quasi-integrable maps by using the normal forms theory.

In order to evaluate the LE, FE and RE for a given initial condition one needs to

compute the orbit and the tangent map along it. If the tangent map is not available,

LE can be evaluated by computing a second orbit for a close initial condition. This

method to calculate the LE is known as the shadow-particle method, see12 and

references therein. The reversibility error can also be obtained as a consequence of

the accumulation of round-off errors. The computation is based on the iteration of

the map n times forward and backward. To summarize we propose two definitions

of the reversibility error. The first one is defined as Reversibility Error (RE), where

the perturbation introduced at each step is an additive noise with known statistical

properties. The second one is the Reversibility Error Method (REM) where the

perturbation at each step is the round-off error introduced by the numerical com-

putations. The first definition is suitable for analytical estimates, the second one is

trivial to implement and has a lower computational cost. The effectiveness of REM

was first shown for the standard map13 and appears to be be comparable with RE,

for maps of sufficient computational complexity. In celestial mechanics, the Mean

Exponential Growth of Near Orbits (MEGNO)14,15 is commonly used. This is a

filter introduced to kill the large oscillations often observed in the Lyapunov-based

error methods (LE). For instance, MEGNO was successfully used to analyze the
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stability of the few-body problem modelling planetary systems16, the stability of

asteroids17,18 and satellites19. The REM procedure was successfully applied to-

gether with LE to analyze the orbital stability of exoplanets11, a subject of growing

interest in astronomy.

Establishing which is the best fast indicator is an open problem11,13,20 and not

always a single fast indicator is sufficient to correctly describe the phase space of

a system. In this paper, we compare the analytical estimates with the numerical

computation of the errors (LE, FE, RE, REM) for the 2D Hénon map and the

agreement is excellent up to the dynamic aperture. The procedure described in this

paper to investigate and characterize the dynamical structure of multi-dimensional

Hamiltonian systems with or without integrals of motions is applied to a 4D map,

modeling the transverse dynamics of a circular accelerator. We choose a 2D phase

plane and fix the value of the remaining coordinates to compute the errors, which

are visualized using a chromatic scale. If an Hamiltonian H interpolating the orbits

is known, one can fix only the third coordinate and impose that the value of H is

the same for all the initial conditions to determine the fourth coordinate. Though in

this case the correspondence between the errors and the orbits of the Poincaré map

for H can be analytically established, the complexity and numerical cost of the

procedure (computation of an interpolating Hamiltonian using the normal forms

and integration of its orbits via an implicit symplectic integrator) discourage its

use. The LE and REM methods are immediate to implement when we fix the

extra coordinates and do not require very long orbits. No more than one thousand

iterations are enough to distinguish regular and chaotic orbits within the dynamic

aperture Magnifications require a correspondingly higher number of iterations to

detect finer details.

Since the REM procedure is extremely simple and numerically efficient, it can be

applied to the one turn map of a realistic lattice. The number of iterations needed

to reconstruct the phase space structure are low unless we are interested in the

long term stability and dynamic aperture, but also in this case the computational

challenge is affordable. The successful application to the orbital stability of exo-

planets should encourage its use for circular accelerators.

2. Celestial mechanics models

In celestial mechanics the two simplest models showing a rich dynamical structure

are the restricted planar three-body problem1 and the Hénon-Heiles Hamiltonian2.

The first one describes the motion of an asteroid subject to the attraction of a star

of mass m1 and a planet of mass m2 << m1, moving on circular orbits around their

center of mass. The asteroid is assumed to move in the same plane as the massive

bodies and to have a vanishingly small mass m3 so that the motion of the star and

the planet are not perturbed. Space coordinates and time are scaled so that the

distance and the periods of the planet are equal to 1 (see for instance21). Denoting

by x, y the space coordinates of the asteroid its Hamiltonian in the co-rotating
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system is given by

H =
1

2
(p2
x + p2

y) + ypx − xpy + V (x, y), (1)

where V is the gravitational potential

V = − 1− µ
(x+ µ)2 + y2

− µ

(x− 1 + µ)2 + y2
µ =

m2

m1 +m2
. (2)

For the sun-Jupiter system the mass ratio is µ = 0.000954. The second term in

the Hamiltonian, due to the rotation, implies that px = ẋ − y, py = ẏ + x. The

Hamiltonian is an invariant of motion and can be written as

H =
1

2
(ẋ2 + ẏ2) + V eff V eff = −1

2
(x2 + y2) + V, (3)

where V eff is the effective potential. Letting H = E be the energy of the system the

Jacobi invariant is J = −2E. There are 5 Lagrange equilibrium points in the x, y

plane where the star is located at (−µ, 0), and the planet at (1−µ, 0). The first three

points L1, L2, L3 lie on the x axis and are unstable. The last two equilibrium points

L4, L5 are ( 1
2 − µ,±

√
3

2 ) so that the three bodies are the vertices of an equilateral

triangle. Though these points are linearly stable they are not Lyapunov stable22.

Indeed in the normal coordinates the quadratic component of the Hamiltonian reads

reads

H2 =
ω1

2
(X2 + P 2

x ) +
ω2

2
(Y 2 + P 2

y ) (4)

where ω1ω2 < 0 so that the linear motion is quasi-periodic but H2 has a saddle.

From KAM theorem23 we know that close to L4 or L5 most of the orbits are

quasi-periodic (their complement has a small measure) and since the corresponding

2D tori are topological barriers to diffusion on the constant energy manifold (the

co-dimension is 1) the stability is insured.

The Hénon-Heiles Hamiltonian describes the motion of a star in an elliptical galaxy

and its Hamiltonian reads

H = T + V =
1

2
(p2
x + p2

y) +
1

2
(x2 + y2)− x3

3
+ xy2 (5)

The potential V (x, y) has a minimum at the origin and three saddle points at (1, 0),(
− 1

2 ,±
√

3
2

)
where V = 1/6. The straight lines defined by

V (x, y)− 1

6
=

1

6
(1 + 2x)(3y2 − (1− x)2) = 0 (6)

intersect at the saddle points which are located at the vertices of an equilateral

triangle within which V (x, y) < 1/6. The orbits of H within the surface H < 1/6 are

bounded, the origin is Lyapunov stable and H = 1/6 defines the stability boundary.
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2.1. Poincaré section and stability plots

The phase portraits for the three-body problem are obtained by projecting on the

x, vx plane the intersections with the y = 0, vy > 0 or y = yc, vy > 0 half hyperplane

of the orbits belonging to a given energy surface H = E. In the x, vx plane the

allowed region is v2
y = (2E−V eff (x, 0))− v2

x > 0, its boundary is defined by vy = 0

and the initial point for any orbit has vy > 0. The same procedure is used for the

Hénon-Heiles model, choosing the y = 0, py > 0 section and projecting on the x, px
phase plane. In the three-body problem for any value of E there are unbounded

collisional orbits, whereas in the Hénon-Heiles model all the orbits are bounded for

E < 1/6. As an alternative to the phase portraits, the Lyapunov error and the

reversibility error have been considered. The precise definitions and the analytic

results on the asymptotic behavior are given in Sec. 5. An advantage is that we

are not restricted to the Poincaré section. Indeed to any initial point in a phase

plane, we associate the error calculated at time t. The phase portraits exhibit well

known structures only if they are obtained by projecting the intersections with an

hyperplane of the orbits belonging to an invariant energy surface. However, if for

any point in the (x, px) phase plane we choose the initial condition by imposing y =

py = 0 (or any other constant value), and project on this plane the corresponding

orbits when they intersect the y = 0 hyperplane on x, px plane, no recognizable

patterns are observed since the orbits have different energies. On the contrary, the

error plots on the phase plane x, px exhibit a very clear pattern connected to the

stability of the orbits. In this way, the regions of regular and chaotic motion can

be easily discriminated.

For the three-body problem we compare in Fig. 1 the Lyapunov and reversibility

error in the x, px phase plane near to L4 choosing y = 0, py > 0 and H = E = Ec+

10−5 where Ec is the energy at L4. The red lines delimiting the accessible area are

close to arcs of the hyperbola p2
x/2−(y−yc)2 α/2 = E−Ec where α = −Vxx(xc, 0) >

0 obtained from py = 0 with a quadratic approximation to V (x, 0). The blue regions

are stable and the corresponding orbits are quasi-periodic, the remaining region

corresponds to unbounded and collisional orbits. For the Hénon Heiles Hamiltonian

in Fig. 2 we show the REM plots in the (x, px) phase plane, choosing y = 0 and

H(x, px, 0, py) = E = with py > 0 for two values of E. These plots exhibit a

very close correspondence with the orbits of the Poincaré map. The purple curve

delimits the accessible area p2
y ≥ 0 and its boundary is p2

x − 2(E − V (x, 0) = 0

Almost all the trajectories are chaotic since the chosen energy is at the border of

the stability interval. In Fig. 3 we show the reversibility error plot in the (x, px)

plane having fixed y = py = 0 for the initial conditions. The stability boundary

H(x, px, 0, 0) = 1/6, purple curve, is the same as in Fig. 2, left panel. The origin

is stable and in its neighborhood all the orbits are regular. By approaching the

stability boundary the energy increases up to the value E = 1/6 and the error

grows by several orders of magnitude since the orbits become progressively chaotic.
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Fig. 1. REM and LE plots. Left panel: the reversibility error due to round-off for the three-body

problem for t = 200T where T = 2π is the period. The evolution is based on a fourth order

symplectic integrator with time step ∆t = T/1000. A color scale is used for the initial points in a
regular grid of (x, vx) phase plane with y = 0, vy > 0 such that H = Ec + 10−5. Right panel: the

same plot for the Lyapunov error.

Fig. 2. REM plot. Left panel: reversibility error due to round-off for the Hénon-Heiles Hamilto-

nian at t = 20T where T = 2π is the period. The evolution is based on a fourth order symplectic

integrator with time step ∆t = T/1000. The initial points are on the (x, px) plane with y = 0,
py > 0 and H = 1/6. The purple curve delimits the accessible region. Right panel: the same plot

for H = 1/10. The phase portraits for the Poincaré map exhibit a similar structure.

Beyond the boundary the orbits escape to infinity exponentially fast. For initial

values y = py = 0.2 the stability boundary H(x, px, 0.2, 0.2) = 1/6, purple curve, is

narrower, the error increases by approaching it and the transition from regular to

chaotic orbits occurs.
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Fig. 3. REM color map. Left panel: reversibility error due to round-off for the Hénon-Heiles
Hamiltonian at t = 20T with the same integrator as in Fig. 2. The initial points are on the (x, px)

plane with y = 0, py = 0. The purple curve delimits the stability region. Right panel: the same

plot for initial conditions y = py = 0.2

3. Beam dynamics models and normal forms

Unlikely the Kepler problem the circular motion of a charge under a uniform mag-

netic field B0 = B0 y is not stable since a non zero component of the initial speed

along the field causes a drift along it. We assume the quadrupoles, which focus the

protons on the reference orbit, to be piecewise constant, and that higher multipoles

are thin so that the kick approximation may be used. For a circular ring of radius

R the Hamiltonian is

H =
p2
x

2
+
p2
y

2
+

1

2

x2

R2
+ V (x, y, s) (7)

where s = v0 t for a speed v0 along the reference orbit, and px = dx/ds, py = dy/ds.

The radius is R = mcv0γ/eB0 and V is the sum of multi-polar contributions

V = −1

2
K1(s)(x2 − y2)− 1

6
K2(s)(x3 − 3xy2) + . . . (8)

For a real ring the bending magnets alternate with straight sections and R is re-

placed by the radius of curvature ρ(s). Consider first the linear lattice of length

L and compute the one turn map by composing the maps for the straight sec-

tions, focusing and de-focusing quadrupoles. Referring for simplicity to a flat beam

y = py = 0 the map is M(x) = Lx where x = (x, px)T . The matrix L is symplectic

namely det L = 1 so that its eigenvalues are determined by its trace. If |Tr(L)| < 2

the eigenvalues are e±iω, and the map is conjugated to a rotation. The conjugation

matrix V can be chosen such that V12 = 0 and is represented by

L = VR(ω)V−1 V =

 β1/2 0

−αβ−1/2 β−1/2

 x′
p′x

 = V−1

 x

px


(9)
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The matrix L changes whith the section whereas R(ω) does not. The functions

α(s), β(s) define the transformation to the Courant-Sneider coordinates (x′, p′x).

The algebraic procedure allows to compute them exactly at any section. The one

turn map L(s) at any other section s is given by

L(s) = AL(0)A−1 (10)

where A denotes the transfer map from 0 to s The ring can be split into a sequence

of arcs [sk−1, sk] with transfer map Ak for 1 ≤ k ≤ N each one corresponding to

a defined magnetic element. Then L(sk) = Ak L(sk−1)A−1
k and α(sk), β(sk) can be

computed by a recurrence relation24. A recurrence allows also to compute the phase

advance Φ(sk) =
∫ sk

0
β−1(s) ds.

3.1. The Hénon map models

The simplest model of a non-linear lattice is given by a linear lattice with a thin

sextupole. If the sextupole strength is K2 and its length is ` in the limit ` → 0

with `K2 = k2 constant its contribution to the potential V is − 1
6 δ(s) k2(x3− 3xy2)

so that the one turn map at s = 0 is M(x) and the orbit is recursively given by

xn+1 = M(xn) where  xn+1

pxn+1

 = L

 xn

pxn + 1
2 k2 x

2
n

 (11)

Taking into account that L = VR(ω V−1 and scaling the coordinates according to

x′ = 1
2β

3/2
x k2 V

−1x we obtain the 2D Hénon map

 x′n+1

p′xn+1

 = R(ω)

 x′n

p′xn + x′n
2

 . (12)

In the general case we have a 4D map M and the recurrence

xn+1

pxn+1

yn+1

py n+1


=



Lx 0

0 Ly





R(ωx) 0

0 R(ωy)





L−1
x 0

0 L−1
y





xn

pxn + k2
2 (x2

n − y2
n)

yn

py n − k2xnyn


. (13)
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After the same scaling as in the 2D case x′ = 1
2β

3/2
x k2 V

−1x where V = Vx ⊕ Vy
and defining β = βy/βx the map reads

x′n+1

p′xn+1

y′n+1

p′y n+1


=



R(ωx) 0

0 R(ωy)





x′n

p′xn + x′n
2 − βy′n

2

y′n+1

p′y n+1 − 2βx′n y
′
n


(14)

3.2. The normal forms

The non-linear normal forms are the natural extension of the Courant-Sneider the-

ory for a non-linear symplectic one turn map. Referring to the 2D case we write

the one turn map in Courant-Sneider coordinates as

M(x′) = MN (x′)+QN (x′) MN (x′) = R(ω)(x′+P2(x′)+. . .+PN (x′)) (15)

where Pk are homogeneous polynomials of order k and QN is a remainder. For the

Hénon map M = M2 but for a realistic lattice M is a polynomial of very high degree,

precisely 2m if m is the number of sextupoles. The normal form is a representation

of the map in a coordinates system where it is explicitly invariant with respect

to a continuous or discrete symmetry group. Consider the group generated by

R(ω): it is continuous if ω/2π is irrational, it is discrete and has only q elements

if ω/2π = m/q where m and q are two prime integers. We look for a symplectic

change of coordinates x′ = Φ(X) such that the map is changed into a new one U(X)

having the prescribed symmetry. The functional equation which determines Φ and

U is

M ◦ Φ(X) = Φ ◦ U(X). (16)

It can be solved iteratively by expanding Φ and U in a series of homogeneous

polynomials or order n in X,Px. Equivalent forms of the functional equation are

M(x′) = Φ ◦ U ◦ Φ−1(x′) U(X) = Φ−1 ◦M ◦ Φ(X). (17)

The map U is written as the linear map generating the group applied to the time

one flow of a symmetric Hamiltonian H

U(X) = ReDH (X) H(RX) = H(X) U(RX) = RU(X). (18)

The symplectic coordinates change Φ can also be written as the time one flow of a

generating function G

Φ(X) = eDG X (19)
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The first functional equation written for Φ and U can be solved formally by expand-

ing these maps into a series of homogeneous polynomials in X,Px. Here DG is the

Lie derivative namely DGf(X) = [f,G]x is the Poisson bracket and eDG denotes

the corresponding Lie series. When the frequency is non-resonant R(ω) generates

the continuous rotations group and we set

U = R(ω) eDH = eDHF (20)

The rotational invariance implies that H = H(J) where J = 1
2 (X2 + P 2) is the

action. Its flow interpolates the orbits of the map in the system which rotates with

the linear frequency ω. The interpolating Hamiltonian in the fixed frame HF and

the corresponding frequency ΩF are given by

HF = ωJ +H(J) ΩF =
dHF

dJ
= ω + 2J Ω2 + (2J)2 Ω4 + . . . (21)

since R(ω) eDH = eDωJ eDH(J) = eDωJ+H .

In the resonant case ω ≡ ωR = 2πm/q the group generated by R(ωR) is discrete.

The map U and the interpolating Hamiltonian in the rotating system are written

as a series of homogeneous polynomials of order n in X,Px. The use of complex

coordinates z = X − iPx and z∗ is convenient to impose the invariance condition.

The map U starts with the identity and the first resonant contribution is z∗q−1 so

that for the corresponding Hamiltonian h the first resonant contributions are z∗q

and zq, wheres the non-resonant contributions are (zz∗)m with m ≥ 2. For instance,

if q = 3 we have h ∝ z3 + z∗3 and using the action-angle coordinates defined by

X = (2J)1/2 cos(Θ) together with Px = −(2J)1/2 sin(Θ) we obtain

H = −4J3/2 cos(3Θ). (22)

The general form of the interpolating Hamiltonian is

H =
∑
k≥1

hk(J) cos(k qΘ + αk). (23)

When the frequency ω is close to a resonance ω = ωR + ε we can impose that the

map U is invariant with respect to the discrete group generated by R(ωR) and we

write U = R(ωR)eDH . The invariance of the map U is insured by the invariance

of H. In this case, the map R(−ωR)U is no longer tangent to the identity but has

a linear term R(ε)X. As a consequence, the Hamiltonian H has a non-vanishing

quadratic component H = εJ+. . .. The expansion looks the same as in the resonant

case, but the coefficients now depend on ε and for ε → 0 the Hamiltonian for the

resonant case is recovered. For a resonance of order q the interpolating Hamiltonian

can be approximated by

H = εJ +
Ω2

2
J2 +AJq/2 cos(qΘ + α) (24)

and exhibits a chain of q islands whose distance from the origin and width vanish

as ε→ 0.
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3.3. Nekhoroshev estimates

The normal form series diverge. For a rigorous formulation, the series are truncated

at arbitrary order and a remainder is introduced. The functional equation reads

M ◦ ΦN (X) = ΦN ◦ (UN (X) + EN (X)), (25)

where UN and ΦN are first recursively determined starting form the truncated map

MN as a sum of homogeneous polynomials up to order N and EN is the remainder

of order N + 1. The next step is to replace UN with a symplectic map having the

same polynomial expansion up to order N . This is crucial since this map must be

iterated. The coordinates transformation is performed once and eventually one can

replace it with a symplectic one

UN = R(ω)eDHN ΦN = eDGN . (26)

The Hamiltonian HN is the sum of homogeneous polynomials up to order N + 1

which are recursively determined starting from UN first obtained as a polynomial

of order N . In the non-resonant case we have UN = R(ΩN ( 1
2 (X2 +P 2

x )) and letting

r = (X2 + P 2
x ) = (2J)1/2 the following estimate holds for the remainder

‖EN−1‖ ≤ A
(
r

rN

)N
r < rN =

1

C N
. (27)

For r fixed the minimum in is achieved for N = N∗ = 1/(Cer) so that r/rN = e−1.

In a disc of radius r the minimum remainder is bounded by

‖EN∗‖ ≤ Ae−N∗ = Ae−r∗/r r∗ =
1

eC
. (28)

Any orbit with initial point in a disc of radius r/2 will remain in a disc of radius r

for a number of iterations n exponentially high in 1/r

n <
1

2
Ar er∗/r. (29)

The Birkhoff series in the non-resonant case diverge due to an accumulation at the

origin of the complex ρ = 2J plane of singularities associated to the resonances. If

ω = 2πm/q+ ε for ε→ 0, the conjugation function Φ behaves as a geometric series

with a pole at ρ = −ε/Ω2 where the frequency Ω ' ω + Ω2ρ is resonant. In the

generic case when ρ is varied, the frequency crosses infinitely many resonances. The

leading ones correspond to the continued fraction expansion mj/qj of the tune ν

and are located approximately at ρj ' −εj/Ω2 where εj = ω−2πmj/qj . A rigorous

analysis confirms this picture25. If ρj > 0 we have a true resonance corresponding

to a chain of islands, while if ρj < 0 the resonance is virtual since it corresponds to

an imaginary value of the radius r =
√
ρ.
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4. Dynamic aperture

The normal forms can be computed also for the symplectic 4D one turn map. In the

non-resonant case the interpolating Hamiltonian is a function of the actions Jx, Jy
which are just twice the horizontal and vertical emittance εx, εy. One immediate

application is the calculation of the resonance lines in the action space. To find

the working point, the resonance lines are drawn in the linear tunes space. The

resonant condition is satisfied when there is an integer vector q = (qx, qy,m) such

that qx νx+qyνy = m and corresponds to a line in the tunes plane. The point where

two lines cross is a second order resonance, defined by two linearly independent

integer vectors q1,q2. Once the working point is chosen, by fixing the linear tunes

far enough from low order resonances, one has to consider the resonances of the

non-linear tune. In the action plane (Jx, Jy) one can draw resonance lines which

cross at the double resonances. The quadratic approximation in Jx, Jy to H

H = 2π(νx Jx + νy Jy) +
2π

2
(h11J

2
x + +2h12 JxJy + h22 J

2
y ) (30)

gives a straight line in the action plane for the resonance q = (qx, qy,m)

ax Jx + ay Jy = b (31)

where ax = h11 qx + h12qy and ay = h12 qx + h22qy and b = m− qx νx − qy νy.

The normal forms can be used to determine the dynamic aperture close to an

unstable resonance. The 2D Hénon map when ω approaches 0 corresponds to a

first order symplectic integrator of the Hamiltonian H = ω(x2 + p2
x)/2− x3/3 with

a unit time step. After the scaling x→ ωx, px → ω px and H → ω3H we get

H =
1

2
(x2 + p2

x)− x3

3
(32)

The dynamic aperture given by p = ±(1 − x)
√

(1 + 2x)/3 is the separatrix of H.

Another approximation is obtained from the lowest order non-resonant normal form

of order 2. The map U is just the linear map so that H = 1
2 ω (X2 + P 2

x ). The

transformation X = Φ−1(x), which is a polynomial of order 2, allows to write H in

the original coordinates as a polynomial of order 3. After the previous scaling with

ω the Hamiltonian reads

H =
x2 + p2

2
−A x3

3
+B xp2 +

ω

2
x2p (33)

The coefficients A = 3
8 (ω cot(3ω/2) + ω cot(ω/2)) and B = 1

8 (3ω cot(3ω/2) −
ω cot(ω/2)) have a finite limit A = 1 and B = 0 for ω → 0 which agrees with

the previous interpolating Hamiltonian.

The Hénon map has an hyperbolic fixed point at x = 2
ω tan ω

2 , px = − 2
ω tan2 ω

2 to

be compared with the saddle point x = 1, px = 0 of the Hamiltonian in equation 5

with y = py = 0 and the saddle point x = 1 + O(ω2), px = −ω2 + O(ω3) of the

Hamiltonian in equation 33. The numerical results confirm the higher accuracy of

this estimate.
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If ω = 2π/3+ε we consider the quasi resonant normal form to approximate the dy-

Fig. 4. REM color map. Left panel: reversibility error due to round-off for the 4D Hénon map

with linear tunes νx = νy = 0.01 iterated n = 5000 times in the plane x, y with y = 0, py = 0 for
the initial conditions. Right panel: the same plot for initial conditions with px = 0.2, py = 0.2

namic aperture as ε→ 0. The interpolating Hamiltonian is H = εJ−4J3/2 cos(3Θ)

and written in Cartesian coordinates after the scaling x→ ε x/4, px → εpx/4 and

H → ε3H/16 reads

H =
x2 + p2

x

2
+

3x(x2 + p2
x)− 4x3

2
√

2
(34)

There are three saddle points at x = 2
√

2
3 , px = 0 and x = −

√
2

3 , px = ±
√

2√
3

where

H = 4/27. The Hamiltonian has the same value at the straight lines joining these

points so that the equilateral triangle having these points as vertices corresponds

to the dynamic aperture as on can prove observing that

H − 4

27
=

1

2

(
1 +

3x√
2

)p2 − 1

3

(
x− 2

√
2

3

)2
 (35)

Finally we consider the 4D Hénon map with equal frequencies ω close to 0. The

interpolating Hamiltonian is the same as the Hénon-Heiles Hamiltonian which has

three saddle points at px = py = 0 with x = 1, y = 0 and x = − 1
2 , y = ±

√
3

2 . As a

consequence, the dynamic aperture is a closed 3D surface defined by

H − 1

6
=
p2
x + p2

y

2
+

1

6
(1 + 2x)

(
3y2 − (1− x)2

)
= 0 (36)

and the stable region is the interior H < 1/6. In Fig. 4 we show in the phase plane

x, px the reversibility error plot by fixing the remaining two coordinates, in this

case, fixing y0, py 0. The stable region is given by H(x, px, y0, py 0) ≤ 1/6 and this

analytic result agrees very well with the dynamic aperture obtained from numerical

simulations when ω � 1. In Fig. 5 we show the REM error plot for the same 4D

Hénon map but in the px, py momentum plane.
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Fig. 5. REM color map. Left panel: reversibility error due to round-off for the 4D Hénon map

with linear tunes νx = νy = 0.01 iterated n = 5000 times in the plane px, py with x = 0, y = 0 for
the initial conditions. Right panel: the same plot for initial conditions with x = 0.2, y = 0.2

5. Lyapunov and reversibility errors

For a symplectic map the errors due to a small initial displacement or to a small

additional noise have well defined asymptotic properties which depend on the nature

of the reference orbit. Their use is suggested for the symplectic one turn maps of

beam dynamics as an alternative to the error in frequency analysis26–28. We recall

here the definitions of LE, FE, RE, the algorithms based on tangent map, and the

results on their asymptotic growth for linear maps. In addition, by using the normal

forms we prove that the growth of errors for a non-linear map follows a power law

in the quasi-integrable region.

Lyapunov error

The orbits of a symplectic map M(x) corresponding to initial conditions x0 and

x0 + εη0 are xn = Mn(x0) and xε, n = Mn(x0 + εη0). As a consequence

xε, n = xn + εηn +O(ε2) ηn = DM(xn−1)ηn−1 (37)

DM(x) denotes the Jacobian of the map M . Introducing the matrices An =

DMn(x0) we have ηn = An η0 where

An = DM(xn−1)An−1 A0 = I (38)

The Lyapunov error depends on the direction of the initial displacement if it is

defined as usually according to

e(L)
n (η0) = ‖ηn‖ =

(
η0 · An ATn η0

)1/2
(39)

We choose the following definition of the Lyapunov error

e(L)
n =

(
Tr (AnA

T
n )
)1/2

(40)
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This error is the quadratic average of the errors on an orthonormal basis uj = Rej
where (ej)k = δj,k and R is a rotation matrix∑

j

(
e(L)
n (uj)

)2
=
∑
j

ej · RT An A
T
n Rηj = Tr (RT An A

T
n R) =

(
e(L)
n

)2
(41)

We have checked that with this definition the spurious structures for LE29, due to

the choice of the initial vector η0, disappear. The maximum Lyapunov exponent is

given by

λ = lim
n→∞

1

n
log e(L)

n . (42)

Forward error

Given a sequence of normalized independent random vectors ξn

〈 ξn 〉 = 0 〈 (ξm)i (ξn)j 〉 = δmm δi j or 〈 ξm ξTn 〉 = I δmn (43)

the stochastically perturbed orbit is given by

xε, n+1 = M(xε, n) + ε ξn+1 n ≥ 0 (44)

The displacement of the noisy orbits from the reference one is

xε, n = xn + εΞn +O(ε2) (45)

where Ξn proves to satisfy the linear non homogeneous recurrence

Ξn = DM(xn−1)Ξn−1 + ξn n ≥ 1 ξ0 = 0 (46)

whose solution is

Ξn =

n∑
k=1

DMn−k(xk) ξk =

n−1∑
k=0

Bk ξn−k Bk = DMk(xn−k) (47)

The matrices Bk satisfies the recurrence

Bk = Bk−1DM(xn−k) k = 1, . . . , n B0 = I (48)

The covariance matrix of the process ξn is

Σ2 (F )
n = 〈ΞnΞ

T
n 〉 =

n−1∑
k=0

Bk B
T
k , (49)

and the forward error (FE) is defined by

e(F )
n = 〈Ξn ·Ξn 〉1/2 = 〈 Tr (ΞnΞ

T
n ) 〉1/2

(
Tr (Σ2 (F )

n )
)1/2

. (50)

Reversibility error
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We consider n forward iterations of the map followed by m iterations of the inverse

map with a random error at each step. Let

xε,−m,n = M(xε,−m+1,n) + εξ−m m ≥ 1 xε,0,n = xε,n (51)

we define the

xε,−m,n = xn−m + εΞ−m,n +O(ε2) (52)

where Ξ−m,n satisfies the recurrence

Ξ−m,n = DM(xn−m+1)Ξ−m+1,n + ξ−m m ≥ 1 Ξ0, n = Ξn (53)

whose solution is

Ξ−m,n = DM−m(xn)Ξn +

m∑
k=1

DM−(m−k)(xn−k)ξ−k (54)

The deviation from the initial condition xε,−n,n−x0 is a stochastic process defined

by

Ξ(R)
n = Ξ−n,n = DM−n(xn) Ξn +

n∑
k=1

DM−(n−k)(xn−k) ξ−k (55)

Defining the matrices

AI
k = DM−k(xk) Ck = AI

n Bk (56)

which can be computed with the recurrence

AI
k = AI

k−1DM
−1(xk) k ≥ 1 AI

0 = I (57)

we can write

Ξ(R)
n =

n−1∑
k=0

Ck ξk +

n−1∑
k=0

AI
k ξ−(n−k) (58)

The covariance matrix is

Σ(R)
n = 〈Ξ(R)

n (Ξ(R)
n )T 〉 =

n−1∑
k=0

CkC
T
k +

n−1∑
k=0

AI
k A

IT

k (59)

and the reversibility error is defined by

e(R)
n = 〈Ξ(R)

n ·Ξ(R)
n 〉1/2 =

(
Tr
(
Σ2 (R)
n

) )1/2

. (60)

Linear maps

In the case of a linear map DM(x) = A the errors can be easily compared. Indeed

in this case Ak = Ak, Bk = Ak and AI
k = A−k, Ck = A−(n−k) As a consequence(

e(L)
n

)2
= Tr

(
An (An)T

) (
e(F )
n

)2
=

n−1∑
k=0

(
e

(L)
k

)2
(61)
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For the reversibility error we have

(
e(R)
n

)2
= 2

n−1∑
k=0

Tr
(
A−k (A−k)T

)
+ Tr

(
A−n (A−n)T − I

)
(62)

Letting Λ be the normal form A = UΛU−1 we have Tr (Ak (Ak)T ) =

Tr (VΛkV−1 (Λk)T ) where V = UTU is symmetric. In dimension 2 we can easily

prove that Tr (Ak (Ak)T ) = Tr (A−k (A−k)T ) so that(
e(R)
n

)2
= 2
(
e(F )
n

)2
+
(
e(L)
n

)2 − 2 (63)

The stability and errors growth rate depend on the linear matrix A and the following

classification holds in the 2D case

If Tr (A)| > 2 then Λ = diag(eλ, e−λ) and all errors grow exponentially en ∼ enλ.

If Tr (A)| < 2 the normal form is a rotation Λ = R(ω) and eLn is bounded whereas

e
(F )
n , e

(R)
n grow as n1/2 with oscillations. Indeed

(
e

(L)
n

)2
= C + (C − 2) cos(2nω)

where C ≥ 2. If A = R(ω) then C = 2 so that e
(F )
n =

√
2n and e

(R)
n =

√
4n = e

(F )
2n

If Tr (A)| = 2 the normal form is a Jordan form Λ =

(
0 α

0 1

)
and in this case eLn

grows as n whereas e
(F )
n , e

(R)
n grow as n3/2

Integrable and quasi integrable maps

The map in the integrable case reads

M(x) = R(Ω(J))x J =
‖x‖2

2
(64)

where J is is an invariant. The tangent map to Mn is is

DMn(x) = R(nΩ(J)) + nΩ′(J)R′(nΩ(J)) xxT (65)

The Lyapunov error is given by(
e(L)
n

)2
= Tr

[ (
RT (nΩ)+nΩ′xxT R′T (nΩ)

) (
R(nΩ)+nΩ′R′(nΩ)xxT

) ]
= 2+n2 Ω′2 ‖x‖4

(66)

where we have taken into account RTR′ = J and R′TR′ = I. As a consequence

setting α = Ω′‖x‖2 = 2JΩ′ we can write

(
e(L)
n

)2
= 2+α2n2 ‖x‖4

(
e(F )
n

)2
=

n−1∑
k=0

(
e(L)
n

)2
= 2n+α2

(
n3

3
− n2

2
+
n

6

)
‖x‖4.

(67)

For the reversibility error we find

(
e(R)
n

)2
= 4n+ α2 ‖x‖4

2n−1∑
k=1

k2 =
(
e

(F )
2n

)2
. (68)
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For a generic polynomial map, such as the map with a non-resonant linear frequency

we can use the normal form representation and, in a disc of sufficiently small radius

r, we can neglect the remainder since it can be made exponentially small. As a

consequence, we write M = Φ ◦ R(ω) ◦ Φ−1

e2
L(n) = Tr

[
B (DR(nΩ))T ADR(nΩ)

]
(69)

where

B = DΦ−1(x0) (DΦ−1(x0))T A = [DΦ(R(nΩ))T DΦ(R(nΩ))]. (70)

Since Φ is a symplectic transformation, A and B are positive symplectic matrices and

e2
L(n) = a(n) + n b(n) + n2 c(n) where the coefficients are bounded and oscillating.

As a consequence, eL(n) grows as αn with oscillations wheres eF (n) and eR(n) grow

as αn3/2 with oscillations.

Using the quasi-resonant normal forms one can consider the case in which we are

close to a resonance. Within any island one can use the non-resonant normal forms

for its elliptic point. Finally the same estimates hold. By approaching the separatrix

the frequency vanishes as 1/ log |J − Js| where the action has a different expression

before and within the island. In any case a power law is always observed with a

coefficient α with diverges on the separatrix itself. The non-integrability effects due

to the neglected remainder change the separatrix into a thin chaotic layer where

the error has an exponential growth.

5.1. Numerical results for the Hénon maps

We propose a stability analysis based on the errors previously defined. The nu-

merical results confirm the theoretical predictions, a power law growth for regular

orbits, an exponential growth for chaotic orbits. In order to kill the oscillations

on the regular orbits an averaging procedure has been proposed. Let e(n) be an

interpolation of the error such that e(n) = en for n integer and let

De(n) =
d log e(n)

d log n
= n

d log e(n)

dn
(71)

For a power law e(n) = nγ we have De(n) = γ whereas for an exponential law

e(n) = eλn we have De(n) = nλ. The following double average with respect to n

was proposed

Y (n) = 〈 〈De(n) 〉 〉 (72)

where Y (n) is the mean exponential growth factor of nearby orbits (MEGNO)14,15.

The growth with n of the errors e(n) and their MEGNO averages Y (n) is shown

in Fig. 6 for a regular orbit of the Hénon map. The exact expressions based on

the tangent map are used to compute LE, FE, RE. We have also considered the

reversibility error (REM) due to the round-off. The amplitude of oscillations for

RE is much smaller with respect to FE. For a rotation with constant frequency,
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REM grows as n whereas RE grows as n1/2. For an anisochronous rotation (the

frequency depends on action) REM grows as n2 whereas RE grows as n3/2, but

within a tiny chain of islands both grow as n3/2. In Fig. 7 we show how the errors

vary when we move along a line crossing an island in the x, px phase plane. The

error increases reaching a maximum on the pseudo-separatrix. A magnification

around it shows that MEGNO does not reach a constant value but has a linear

growth. We have repeated the computation with the resonant normal form which

has a chain of islands with a real separatrix and in this case MEGNO never exceeds

the value 1/2 for LE and 3/2 for FE and RE. Within the island REM and RE are

very close and the power law exponent is the same (see Fig. 7).

Fig. 6. Left panel: comparison in a log-log scale of the errors e(n) when n is varied for an orbit
of the Hénon map with ν = 0.21 and x0 = 0.76, p0 = 0. LE (blue line), FE (red line), RE (green

line) and REM (grey line). Right panel: the same for the MEGNO average Y(n)

In Fig. 8 we compare the errors in the phase plane for a fixed value of n excluding

the unstable points which are beyond the dynamic aperture. The pictures are very

similar and suggest that the computation of just LE and REM is adequate. We have

compared the LE and REM errors with the error performed with the frequency

analysis, defined as the error on the frequency computed on one orbit of length

n = 2m−1 and n = 2m. The main feature is that the variation along a line in the

phase space joining the origin with the center of an island is much less regular unless

a very long orbit is computed (typically n = 214).

Some spikes, whose origin is numerical rather dynamical, are observed and they are

not present in REM. Similar considerations hold for the error plots in the phase

space. For the 4D Hénon map we have examined a large number of error plots

in a phase plane, fixing the remaining two coordinates. Usually values of n below

1000 are sufficient. It is possible to have a tree dimensional view of the errors by
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Fig. 7. Left panel: comparison the errors e(n) for the Hénon map with ν = 0.21 when the initial

point (x0, px0) is varied along the line joining the origin with the center of the first island in the
x > 0, px > 0 sector. LE (blue line), FE (red line), RE (green line) and REM (grey line). Right

panel: the same for the MEGNO average Y(n)

Fig. 8. Comparison the errors e(n) for n = 100 and initial points on a grid of the x, px phase

plane for the 2D Hénon map with ν =
√

2 − 1. Upper left Lyapunov error, upper right forward

error, lower left reversibility error, lower right reversibility error due to round-off.

fixing just one coordinate say py, drawing in x, px plane the error plot with a color

scale and varying y step by step until the dynamic aperture shrinks to zero. The

animation on a grid 200 × 200 with a few tenths of values of y which lasts about
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one minute allows to have a reliable stability portrait of this 3D subspace. A few

animations corresponding to different values of py complete the stability picture.

The required CPU-time is low since a single 2D plot takes a few minutes and an

animation about one hour on a single processor. For a better understanding of the

long term dynamic aperture one might compare the maximum distance reached in

the phase space with the corresponding LE or REM errors. Since in this case the

number of iterations is considerably higher, a cluster of processors is needed.

6. Conclusions

Celestial and beam dynamics have the same Hamiltonian structure and many com-

mon features concerning the stability problem. For this reason methods first de-

veloped in celestial mechanics, such as canonical perturbation theory, have been

exported to beam dynamics. The Birkhoff normal forms are the version of pertur-

bation theory suited to analyze the topology of orbits and the stability of symplectic

maps. Their use was proposed for the one turn map of a circular accelerator as the

natural generalization of the Courant-Sneider theory. The frequency map analysis

first proposed for the planetary motion was applied to the one turn map on a ring.

We have examined the analogies between two basic models in celestial mechanics,

the three-body problem and the Hénon Heiles Hamiltonian, and two beam dynamics

models such as the 2D and 4D Hénon maps. For a Hamiltonian with 2 degrees

of freedom the Poincaré section method allows to visualize the orbits belonging

to a constant energy surface. For a Hamiltonian with 3 degrees of freedom it

is no longer possible to visualize the orbits unless we have an additional integral

of motion. The orbits of a 4D symplectic map, can be conveniently visualized

only if we know an invariant of motion. This problem was overcome in celestial

mechanics by using the Lyapunov error and more recently the reversibility error

a stability indicator. The frequency error method requires long orbits which can

trigger numerical instabilities, but the Lyapunov and reversibility errors do not face

these problems. The error depends only on the initial conditions and the number of

iterations. As a consequence one can choose two coordinates in a given phase plane

and fix the remaining ones (no invariant manifold is needed). This is a common

procedure for models with many degrees of freedom such as a planetary system

where the phase plane coordinates are, for instance, the semi-major axis and the

eccentricity of a planet. In the restricted three-body problem, one can choose the

x, y coordinates of the satellite fixing its initial velocity.

The error plot in the chosen phase plane allows to discriminate the stability of the

orbits. For a symplectic 4D map the error plot in a chosen phase plane is obtained

fixing the two remaining coordinates. The Birkhoff normal forms allow to determine

the short term dynamic aperture close to the unstable (0,1/3) resonances and to

prove the power law growth rate, with a pre-factor proportional to the de-tuning,

for the Lyapunov and noise-induced errors for the orbits belonging to invariant

tori, which they interpolate. The reversibility error due to round-off REM is a
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numerical recipe, for which no rigorous foundation can be established. Nevertheless

the stability plots provided by REM and RE are very similar for symplectic maps

having a sufficiently high computational complexity and the use of the former is

by far faster and easier to implement. As a consequence its use jointly with LE is

suggested for the one turn maps even for a deeper investigation of the long term

dynamic aperture since their application to the orbital stability of exoplanets have

been established quite successfully.
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